手机版
1 2 3 4
首页 > 新闻中心 > 翻译公司资讯 >
翻译公司资讯

世联翻译公司完成林业区域“区域林业碳汇源计量体系”简介英文翻

发布时间:2020-07-31 15:58  点击:

世联翻译公司完成林业区域“区域林业碳汇源计量体系”简介英文翻译
Regional Forestry Carbon Sink / Source Measurement System
 
Executive Report
 
 
Implementation Units
The Nature Conservancy
Sichuan Forestry Survey and Planning Institute
Institute of Geographic Sciences and Natural Resources Research
Sichuan Academy of Forestry
Chengdu Institute of Biology, Chinese Academy of Scienc
Funding Agencies:
 
 
June 2014, Beijing 
 
Content 
Foreword
Project Objectives and Technical Route
Major Activities
Activity I: carrying out survey of land-use changes and forestry carbon accounting methodologies, parameters, metering system or model, including:
Activity II: assessment of land use changes in Sichuan province and forestry data and its applicability
Activity III: based on the above research activities, the land use changes and forestry data of Sichuan province, the application model and related costs to develop a framework for measuring carbon models the IPCC Third tier methodologies, as well as a carbon measurement framework system.
Activity IV: land use changes and forestry data collection, interpretation, standardization, the confirmation of forestry land use transition matrix of Sichuan province.
Activity V: collecting all the research literature on Chinese biomass and biomass equations and abroad, carrying out comprehensive analysis and establishing a national-scale biomass and litter equations and other carbon accounting parameters. These parameters are used to the measurement of way I in this carbon measurement system.
Activity VI: Sichuan province's forest biomass, shrub biomass, undergrowth shrub and grass, litter supplementary survey, measurement and model establishment. The project's measurement and modeling is used to initialize Method II sample tree in measurement system, carbon measurement in sample place and Method III model.
Activity VII: organic forest soil carbon research, investigation and measurement
Activity VIII: Measurement of 49 kinds of plant physiological and ecological parameters: measurement of the thirty-two categories of field trees, fifteen kinds of shrubs and four kinds of herbaceous plants' photosynthesis A-Ci curve (net photosynthetic rate and CO2 concentration), dark respiration, stomatal conductance, maximum carboxylation rate, maximum electron transport rate, physiological and ecological parameters such as leaf area and nitrogen content of various organs and carbon / nitrogen ratio. Activities IX: collecting and purchasing the 2010 historical climate data, developing, verifying and calibrating the radioactive transfer model, checking the spatial data of climate stations.
Activities X: researching on ecological process model and remote sensing model, developing Sichuan land use change and forestry carbon accounting model.
Activities XI: developing a linking program, carrying out clustering and overlay analysis, determining the minimum 10,540,000 calculating spatial units, improving inputs and outputs of model circulation structures.
Activities XII: running the model, Sichuan carbon sinks for the past twenty years and the results were analyzed, as the methodology of third level in this measurement system.
Activities XII: Development of first methodology based on forest resources statistics and second methodology based on forest resources survey sample place and sample tree statistics including relevant parameters (tree density, biomass expansion equation, root to shoot ratio, carbon content, etc.). Sichuan province's past 20 years of carbon sinks are measured, and the results are analyzed.
Activity XIII: applying a user-friendly interface, developing a software-use system , so that to enable the existing first-level and second-level methodology of computing, as well as the query and output of three levels of long time series methodology results.
Activity XIV: conducting a comprehensive analysis of three methodologies and drafting the project technical reports. ,which includes the technical description reports of three methodologies(more than 400 pages) and the results portfolio.
Activity XV: project research conferences: during the execution of the project, a large number of seminars were held, some important seminar were:
Activity XVI: International training: six project technical staff participated in CBM-CFS3 training held in Pacific Forestry Centre in Victoria, Canada, from February 27 to March 1 in 2012. 21
Activity XVII: during the climate change conference in Bonn, the multi-party forest carbon measurement conference was held on June 6, 2014 , introducing the results of this project.
Activity XVIII: The international jury .
Activity XVIIII: project summary conference
Main Outcomes
Foreword
Regular reporting of greenhouse gas inventories are the basic obligations for countries to fulfill The United Nations Framework Convention on Climate Change(UNFCCC). The Chinese government also asks all provinces and regions to submit regular greenhouse gas inventories. Land use changes and forestry carbon sinks are an important part of the greenhouse gas inventories of all countries and provinces and regions within the country. Changes in land use and forestry are extremely complex and has high uncertainty. China has a vast, complex terrain with a huge geographic span from tropical to cold temperate, from humid areas to the arid and semiarid regions and China has various vegetation types, making the measurement of land use change and forestry carbon sinks extremely complex and difficult.
To improve the accuracy, reliability, transparency and comparability of the countries compilation of national greenhouse gas inventories, the Intergovernmental Panel on Climate Change (IPCC) has published and updated the Compilation Guidelines for National Greenhouse Gas Inventories since 1995 for several times. The greenhouse gas sources are measured according to three tier methodology ranking from low to high. Among which Tier 1 carries out calculation through application of IPCC calculation methods and international parameters, Tier 2 carries out calculation through application of IPCC calculation method and country parameters, the Tire 3 methodology carries out calculation through application of country methods and parameters, including the establishment of a national carbon accounting system or model, and the application of satellite remote sensing and GIS, etc.
Directing at land-use change and forestry, the major developed countries, such as Canada, Australia, USA, UK etc. in whole or in part adopt Tire 3 methodology, especially in Canada, Australia and other countries national carbon accounting system or model are established. China has submitted two national greenhouse gas inventories to UNFCCC, IPCC Tier 2 methodology is mainly used in land-use change and forestry, the conformability can be up to 50%. In compiling the provincial greenhouse gas inventories, similar methods are applied.
In 2009, State Forestry Administration launched the "forestry carbon sink metering and  monitoring system construction". The project was started in 2009 and was listed as one of the first four pilot provinces by the State Forestry Administration. Sichuan has huge forest resources in China, its forest areas accounting for 8.4% of the country's total forest areas and its storage accounting for 12% of the total national amount. Sichuan province has complex terrain, from the plains, hills, low altitude mountains, medium altitude mountains to high altitude mountains, covering China's major ecosystem types. Therefore it has typical meaning to choose  Sichuan province as a demonstration province. The project aims to explore and establish a provincial or regional land-use change and forestry carbon accounting system in compliance with the highest level of IPCC methodology. The project is funded by the German Environment, Nature Conservation, Construction and Nuclear Safety Bureau  (BMUB), National Forestry Administration and Sichuan Forestry Department.
 
Project Objectives and Technical Route
Project objectives: taking Sichuan province as a demonstration province , based on the latest IPCC higher-level Guidelines methodology, to build a internationally recognized regional land-use change and forestry carbon measurement methodology (including the conversion between forest and other land types ) to meet possible future UNFCCC reporting and future intentional reporting requirements obligations, and to meet the information request by Sichuan Forestry to address climate change carbon sink forestry management policies, to improve China's ability to accounting land-use change and forestry carbon sinks.
Technical Route: Based on the survey of forest resources, monitoring systems, integrating multi-source, multi-outcome data on forest resources survey, remote sensing data, climate data, through forest carbon sink metering data base research to establish regional forestry carbon sink/source measurement platform applying to different scales and objects with gradually improved measurement and accuracy. Applying measurement system to carry out quantitative accounting about forestry carbon reserves and the spatial-tempetial trends of carbon sink/source, and comparing and verifying related measurement methods.
First, carrying out research on basic measurement data. ①carrying out informationization and standardization research on the data already have of forest, climate and remote sensing in the past forty years; ②carrying out the special research on the key elements such as biomass, forest soul organic carbon and physiological and ecological parameters.③ carrying out system. Second, carrying out research on measurement methods. ① taking the provincial statistical outcome as measurement, optimizing IPCC methodology recommended Tier 2 as the first level methodology of this measurement system; ② tinning the measurement down to the sample place and tree, carrying out systematic research on biomass, forest soil organic carbon measurement model, developing methodology based on the measurement of sample place and tree, that is the Tier 2 methodology of this measurement; ③ based on Tier 2 methodology ,integrating multi-source, multi-phase data such as remote sensing, climate data, physiological and ecological parameters and further extending to the measurement of spatial units to hill plots, developing Tier 3 methodology based on ecosystem process model.
 
Major Activities
Activity III: (Figure 1).
 
 
Tier 1 method                      tier 2 method                  tier 3 method
Figure 1 Carbon Measurement System Framework
 
Activity IV:
 
Table 1 Land Use Transition Matrix
Transferred out
 transferred in Woodland  非林地
Forest land  Open forest land  Shrub Land Other Forest Farmland grass land Waters Unused land Construction land
Forest stand Economic Forest Bamboo Forest
Forest stand 10738959  15284  42212  76376  26409  113562  23458 
Economic Forest 58114  699096  6814  7025  14390  111907  6994  27977 
Bamboo Forest 15114  4762  319755  7370  13433  13382 
Open forest land  200919  12135  375426  18916  14125 
Shrub Land 38793  18922  15725  6809678  30344  8897  710  710 
Other Forest 343867  48986  36822  25510  374312  1882915  47021  5225  7837
Farmland 246963  215096  61496  14617  109782  9528775  4862  14585  140987 
grass land 4842  4865  24911  8651706  0
Water area  4865  801133  0
Unused Land 4842  4865  5059338  0
Construction Land 815708  0
 
Figure 4  Land Use Change Figure
 
 
 
Table 2 Models for Single Plant Biomass
Species Position Form of the Equation
(B = single forest plant biomass, kg d.m.) Parameter Values Number of Samples Scope Modeling Location Literature Sources
a b c DBH (cm) Tree Height H (m) Forest Age (years)
Kashiwagi Aboveground   0.12703 0.79975 6~20 Dejiang,Guizhou province An Heping et al, 1991
Aboveground   0.1789 0.7406 16 - Yanting,Sichuan Shi Peili et al ,1996
Fujian Cypress Whole Forest   0.0614 0.9119 17 10~37 Anxi,Fujian Yang Zongwu et al, 2000
Whole Forest   0.13059 2.20446 28 4.4~14.8 4.4~9.3 6~15 Zhuzhou,Hunan Xue Xiukang et al, 1993
Arborvitae Aboveground   2.57097 0.03172 75 3.9~15.2 3.16~10.35 Yixian,Hebei Ma ZengWang et al, 2006
Thunbergii Whole Forest   0.1425 0.9181 18 33 Mouping,Shandong Xu Jingwei et al, 2005
Korean Pine Whole Forest   0.30891 0.79746 53 2.8~32.8 2.80~20.71 Liaoning Province Jia Yun et al, 1985
Aboveground   0.0615 0.3815 15 Baihe Forestry Bureau Chen ZhuanGuo et al, 1984
Armandi Whole Forest   -2.9132 0.9302 86 4.0~38.3  3.0~20.1 14~57 Mt.Xiaolong, Gansu Cheng Tongren et al, 2007
Pinus Taiwanensis Whole Forest   0.02193 1.04658 6.0~17.95 5.75~9.15 Shangchen,Henan Zhao Tishun et al, 1989
Loblolly Whole Forest   -2.77631 2.52444 50 9~17 Jurong,Jiangsu Kong Fanbin et al, 2003
Abies Aboveground   0.0387 0.9293 6.2~29.1 7.7~15.8 Ebian,Sichuan Su Ming et al, 2000
Fir Aboveground   0.0323 0.9294 20 Baihe Forestry Bureau Chen Zhuanguo et al, 1984
Spruce-fir Whole Forest   -3.2999 0.9501 57 5.5~45.7  6.0~20.5 10~69 Mt.Xiaolong, Gansu Cheng Tongren et al, 2007
Redskins Spruce Aboveground   5.2883 -2.3268 0.5775 17 6~37 Suileng,Heilongjiang Mu Liqiang et al, 1995
.............
 
Bamboo Type Bamboo Species (group) Equation
(Kg d.m. plant -1) Modeling Location Literature
Large Diameter Scattered Bamboos Phyllostachys (bamboo)
Changning,Sichuan He Yaping et al, 2007
  
Northern Fujian Chen Hui et al, 1998
 
  
Northern Guizhou Wu  Qixin, 1983
 
Dagang Mountain, Jiangxi Wu Qixin
 
Nie Daoping, 1994
 
Zhejiang Zhou Guomo, 2006
W aboveground = -11.497 +3.0465 DBH +0.111 7DBH2 Jiangxi, southern Zhejiang Chen Shuanglin et al, 2004
W aboveground = -11.497 +3.0465 DBH +0.111 7DBH2 Southern Jiangxi Li Xi et al, 2007
Phyllostachys (bamboo)   
Xu DaoWang et al, 2004
Phyllostachys (Taiwan Makino)
 
Eastern Fujian Zheng Yushan et al, 1997
W aboveground = -11.497 +3.0465 DBH +0.111 7DBH2
W total = 0.000721DBH2.8382H-0.3078 Eastern Fujian Zheng Yushan and Liang Hongshen, 1998
Large Diameter Scattered Bamboos Dendrocalamus(Dendrocalamus Latiflorus) W aboveground=0.540093DBH1.9305
W aboveground=0.172139DBH1.5684H0.3916 Fujian, Hainan Liang Hongshen and Chen Xuekui, 1998
Dendrocalamopsis(bamboo)
 
Fujian Province Zheng Yushan et al, 1997
..... ..... ....... ..... .....
 
Table 3 Aboveground Biomass - Related Accumulation Equation
Species (group)
 
 
 
 
Spruce, Fir 4.165749 0.653489
Larch 1.641699 0.801589
Korean Pine 2.783807 0.695848
Pinus Sylvestris 2.844362 0.677522
Chinese Pine 2.632238 0.696978
Armandi 4.573398 0.583726
Mason Pine 1.827539 0.792975
Slash Pine 2.053735 0.772233
Other Pines(including Simao pine, Yunnan pine,Taiwan pine , red pine, black pine, mountain pine, Changbai pine, loblolly pine, etc.) 2.403794 0.723530
Kashiwagi 1.985272 0.794173
Chinese Fir 2.536998 0.674639
Other fir (metasequoia, cedar, redwood, Keteleeria, Taxodium) 2.694643 0.665671
Quercus 1.340549 0.896018
Birch 1.075562 0.902351
Sweetgum, Schima superba, ashtree, walnut, yellow pineapple 2.685404 0.741345
Camphor, Phoebe 4.292969 0.613426
Other hardwood class 3.322268 0.687013
Poplar 0.942576 0.871034
Eucalyptus 1.221362 0.869172
Achacia 2.969276 0.706251
Casuarina 6.932459 0.595017
Other soft broad categories (linden, sassafras, willow, paulownia, neem, etc.) 1.142254 0.876051
Mixed Coniferous 3.211378 0.6466
Mixed Conifer 2.208249 0.7437
 
Table 4 Litter— Aboveground Biomass  Related Accumulation Equation
Species (group)
 
 
 
 
Spruce Fir 20.7385 -0.0102
Larch 67.413 -0.0141
Chinese Pine 24.2749 -0.0217
Mason Pine 7.2175 -0.0067
Other Pines (including Simao pine, Yunnan pine, Taiwan pine , red pine, black pine, mountain pine, Changbai pine, loblolly pine, red pine, Pinus sylvestris, pine, slash pine, etc.) 13.1198 -0.009
Kashiwagi 3.7595 -0.0047
Fir and other fir 4.9897 -0.0025
Quercus 7.7325 -0.0048
Birch, sweet gum, lotus wood, Shui Hu Huang, camphor, phoebe, and other hardwood class 6.9779 -0.0043
Poplar 12.3106 -0.0069
Eucalyptus 24.697 -0.014
Achacia 9.5338 -0.0004
Other soft broadleaf categories (linden, sassafras, willow, paulownia, neem, etc.) 8.1286 -0.0046
Mixed Coniferous 31.4239 -0.0257
Broadleaf Mixed Forest 10.7653 -0.0057
Mixed Conifer 9.7816 -0.0063
 
Activity VI: carrying out supplementary survey, measurement and model establishment of Sichuan province's forest biomass, shrub biomass, undergrowth shrub and grass, litter. The project's measurement and modeling is used to initialize Method II sample wood in measurement system, carbon measurement in sample place and Method III model.
Forest biomass measurement adopting systematic sampling and typical sampling methods, gathering 1477 plants of  15 categories major forest tree types in field ,measuring ) biomass of various organs (trunks, branches, leaves, roots).
 
 
Establishing an interaction term (D2H) regression model of 15 species' (group) biomass in each plant organ of single plant and test factor of trees in the following Table 5.
Table 5 Biomass in each organ of single plant and tree test factor interaction term (D2H) regression model
Model Form: y = a (D2H) + b
Dominant Species (group)
Trunk Branch Leaf Root
a b a b a b a b
Spruce 0.0114 37.5626 0.0665 0.7169 0.0430 0.6821 0.0345 0.7994
Yunnan Pine 0.0120 6.9646 0.0349 0.7164 0.0578 0.5700 0.0723 0.5810
Kashiwagi 0.0187 2.4597 0.1317 0.5290 0.2205 0.4404 0.1011 0.5461
Chinese Fir 0.0101 5.0111 0.0728 0.5699 0.1656 0.4384 0.0577 0.6238
Mason Pine 0.0134 13.0579 0.015 0.8166 0.0263 0.6604 0.0525 0.7136
Larch 0.0111 4.7674 0.0474 0.618 0.0310 0.5661 0.0140 0.8206
Other pines 0.0206 1.6156 0.0047 0.9834 0.0051 0.9249 0.0048 1.0287
Other Birch 0.0121 30.3463 0.0114 0.8854 0.0076 0.7340 0.0184 0.8186
Quercus 0.0178 20.5873 0.0271 0.7687 0.0465 0.5449 0.0773 0.7186
Other Camphora 0.0168 6.7421 0.0257 0.7968 0.0312 0.6505 0.0086 0.9625
Phoebe Species 0.0174 6.1856 0.0207 0.7735 0.0271 0.6093 0.1408 0.6558
Populus 0.0093 25.8334 0.0423 0.7713 0.1318 0.4315 0.1157 0.6272
Eucalyptus 0.0169 -0.5333 0.0638 0.5490 0.2170 0.2665 0.0342 0.7237
Hard Broadleaf 0.0217 7.4214 0.0079 0.9124 0.0164 0.7005 0.0051 1.0082
Soft Broadleaf 0.0169 4.0108 0.0373 0.7287 0.0889 0.4166 0.0876 0.6115
 
Using forest resource to carry out survey on measurement data of sample place; through stepwise regression analysis, establishing the regression equation of thirty groups' tree measurement data D2H and geographical factors (lon, (lon) 2, (lat), (lat ) 2, (elev), (elev) 2) (Figure 6), and by fusing the above-described biomass (D2H) allometric equation of biomass, realizing biomass equations spatial extension.
Table 6 (D2H) and geographical factors related equation
Dominant Species (group)
(Group) Model Form: f(D2H)=aD2+bD+c(lon)2+d(lon)+e(lat)2+f(lat)+g(elev)2+h(elev)+K
A b c d e f g h K
Spruce 43.54 -926.04 -274.34 55283.76 / / / / -2772311.75
Fir 35.75 -636.49 -5.25 / 224.59 -13302 / / 256096.84
Hemlock 54.22 -1516.6 / / / / / / 11052.41
Yunnan Pine 32.84 -523.99 -181.87 36855.05 78.51 -4464.19 / / -1801214.28
Mason Pine 22.76 -199.65 16.19 -3492.23 / / - E +00 / 188793.11
High Moutain Cedar 19.62 -266.53 -89.94 18608.54 / / / 10.26 -978330.72
Low, High Mountain Cedar 20.61 -158.16 / / -0.3 / / -0.34 875.79
Larch 30.6 -524.14 / -1152.39 / / / / 128038.05
Chinese Fir 26.35 -295.47 -0.16 / / 30.81 / / 1835.8
Slash Pine 21.69 -170.02 -5502.2 1155200.23 10689.55 -620167.84 / / -51639309.06
Cedar 22.13 -180.92 / / / / / 1.68 -173.53
Armandi 36.78 -659.8 115.9 -24689.17 3.65 / / / 1315417.89
Mountain Pine 30.62 -446.9 441.97 -89058.57 / / / -2.12 4495223.28
Chinese Pine 66.65 -1835.12 / 3564.17 1541.2 -100688.81 / 5.03 1274255.21
Keteleeria 27.66 -485.65 3952.86 -803800.14 -8.68 / / -4.5 40875436.88
Camphor 19.77 -187.59 / / 1.83 / / -0.14 -815.57
Phoebe 24.3 -263.16 / / / / / 1.4 183.02
Eucalyptus 18.18 -71.54 -44.41 9369.41 -72.28 4411.34 / -- -561336.58
High mountain Poplar 25.21 -242.97 / / -13.93 847.31 / -3.89 -5704.95
Low, High Mountain Populus 18.95 / / / / / / / -871.2
High Mountain Cedar 27.77 -369.61 -159.31 32406.41 / / / / -1646180.34
Low, High Moutain Cedar 22.37 -211.5 -35.91 7566.31 / / / 1.21 -398222.42
High Moutain Cedar 24.42 -362.14 -181.65 36742.67 115.51 -6768.48 / 4.08 -1763119.14
Low, High Mountain Cedar 23.13 -301.38 / -87.77 -60.85 3753.21 / / -47019.16
High mountain hard broadleaf 13.92 / 29621.07 -6118458.23 -24173.58 1579478.62 / / 290152586
Medium-height mountain hard broadleaf 18.08 -150.63 / / 85.21 / / / -2059.66
Low mountain hard broadleaf 19.7 -133.28 / / / / / -1.68 751.98
High mountain soft broadleaf 31.99 -559.93 / / / / -0.01 34.39 -55578.55
Medium-height mountain soft broadleaf 32.87 -580.84 / / 0.96 / / 1.81 804.53
Low mountain soft broadleaf 38.35 -583.95 -0.37 / / 94.36 / 1.09 3354.75
 
measuring the biomass of shrubs and herbaceous in nearby 122 continuous forest inventory sample plot. fitting and screening the biomass model of undergrowth shrubs and herbs;
undergrowth shrubs: Leaf 
Branch: 
Underground: 
Total: 
 
Under forest plantation:aboveground: 
Underground: 
Total: 
 
Under forest brush and grasses:aboveground: 
Branch: 
Underground: 
 
The Y in the equation stands for biomass(t/ha); is the plantation average coverage(%); is the product of brush average altitude (cm) and coverage。
 
(e) Measuring the litter amount of 214 continuous forest inventory sample place, and collecting sample of litter, analyzing the carbon and nitrogen content. Fitting and screening the litter model:
Coniferous forest: 
Mixed Forest 
Deciduous forest : 
Evergreen broadleaf forests: 
Bamboo forests: 
In the equation, Y stands for litter amount(t/ha); 、 、 、  seperately stand for the thickness(cm)of litter layer, stand volume(m3/ha),stand density(plant/ha)and dominate species average(m)。 、 、  seperately stand for longitude, latitude and altitude.
(f) Choosing 21 moso bamboo continuous survey sample place and  37 mixed sample plots,measuring the biomass of each organ of different diameter(taking one to two plants of each sample place in each diameter level with a total of 78 plants and biomass in mixed bamboo sample place. Fitting and screening the best single plant moso bamboo model:
Bamboo pole:  (D stands for diameter)
Bamboo branch: 
Bamboo leaf: 
Bamboo root: 
Since in the forest inventory carried out before 2007, only the number of moso bamboo plants were surveyed and thus there were no single plant measurement data. In the mixed bamboo sample place there were only plants number surveys. Thus we establishing and screening the best regression model of the biomass of bamboo and mixed bamboo Y(t/ha) and the number of plants N(plant/ha)in unit area:
Moso bamboo: 
Mixed bamboo: 
(g) Choosing 8 typical brush species of Sichuan, setting 27 survey sample plots,measuring the biomass and litter amount of each organ,fitting and screening the best regression model of biomass , litter amount (Y) and brush coverage degree(X):
Brush biomass: 
Brush litter amount: 
(h) While measuring the biomass, litter amount of all standing forests ,bamboo forest, under forest brush and grass, brush, gathering more than 1000 plant sample of different organs, including over 400 tree samples, moso bamboo, 84 moso bamboo samples, some mixed bamboo samples,276 under forest brush samples,186 under forest plantation samples,over 100 brush forest samples,221 litter sample. Carrying out measurement of carbon content.
 
Major Outcome
This project produced a lot of parameters, such as biomass equation, biomass accumulation default equation and litter equation and are directly applied foresting planting carbon sink project methodology approved by National Development and Reform Commission and forests operation carbon sink project methodology adopts also these. Following picture is the screenshot of the methodology of outcomes of this project.

Unitrans世联翻译公司在您身边,离您近的翻译公司,心贴心的专业服务,专业的全球语言翻译与信息解决方案供应商,专业翻译机构品牌。无论在本地,国内还是海外,我们的专业、星级体贴服务,为您的事业加速!世联翻译公司在北京、上海、深圳等国际交往城市设有翻译基地,业务覆盖全国城市。每天有近百万字节的信息和贸易通过世联走向全球!积累了大量政商用户数据,翻译人才库数据,多语种语料库大数据。世联品牌和服务品质已得到政务防务和国际组织、跨国公司和大中型企业等近万用户的认可。 专业翻译公司,北京翻译公司,上海翻译公司,英文翻译,日文翻译,韩语翻译,翻译公司排行榜,翻译公司收费价格表,翻译公司收费标准,翻译公司北京,翻译公司上海。
  • “贵司提交的稿件专业词汇用词准确,语言表达流畅,排版规范, 且服务态度好。在贵司的帮助下,我司的编制周期得以缩短,稿件语言的表达质量得到很大提升”

    华东建筑设计研究总院

  • “我单位是一家总部位于丹麦的高科技企业,和世联翻译第一次接触,心中仍有着一定的犹豫,贵司专业的译员与高水准的服务,得到了国外合作伙伴的认可!”

    世万保制动器(上海)有限公司

  • “我公司是一家荷兰驻华分公司,主要致力于行为学研究软件、仪器和集成系统的开发和销售工作,所需翻译的英文说明书专业性强,翻译难度较大,贵司总能提供优质的服务。”

    诺达思(北京)信息技术有限责任公司

  • “为我司在东南亚地区的业务开拓提供小语种翻译服务中,翻译稿件格式美观整洁,能最大程度的还原原文的样式,同时翻译质量和速度也得到我司的肯定和好评!”

    上海大众

  • “在此之前,我们公司和其他翻译公司有过合作,但是翻译质量实在不敢恭维,所以当我认识刘颖洁以后,对她的专业性和贵公司翻译的质量非常满意,随即签署了长期合作合同。”

    银泰资源股份有限公司

  • “我行自2017年与世联翻译合作,合作过程中十分愉快。特别感谢Jasmine Liu, 态度热情亲切,有耐心,对我行提出的要求落实到位,体现了非常高的专业性。”

    南洋商业银行

  • “与我公司对接的世联翻译客服经理,可以及时对我们的要求进行反馈,也会尽量满足我们临时紧急的文件翻译要求。热情周到的服务给我们留下深刻印象!”

    黑龙江飞鹤乳业有限公司

  • “翻译金融行业文件各式各样版式复杂,试译多家翻译公司,后经过比价、比服务、比质量等流程下来,最终敲定了世联翻译。非常感谢你们提供的优质服务。”

    国金证券股份有限公司

  • “我司所需翻译的资料专业性强,涉及面广,翻译难度大,贵司总能提供优质的服务。在一次业主单位对完工资料质量的抽查中,我司因为俄文翻译质量过关而受到了好评。”

    中辰汇通科技有限责任公司

  • “我司在2014年与贵公司建立合作关系,贵公司的翻译服务质量高、速度快、态度好,赢得了我司各部门的一致好评。贵司经理工作认真踏实,特此致以诚挚的感谢!”

    新华联国际置地(马来西亚)有限公司

  • “我们需要的翻译人员,不论是笔译还是口译,都需要具有很强的专业性,贵公司的德文翻译稿件和现场的同声传译都得到了我公司和合作伙伴的充分肯定。”

    西马远东医疗投资管理有限公司

  • “在这5年中,世联翻译公司人员对工作的认真、负责、热情、周到深深的打动了我。不仅译件质量好,交稿时间及时,还能在我司资金周转紧张时给予体谅。”

    华润万东医疗装备股份有限公司

  • “我公司与世联翻译一直保持着长期合作关系,这家公司报价合理,质量可靠,效率又高。他们翻译的译文发到国外公司,对方也很认可。”

    北京世博达科技发展有限公司

  • “贵公司翻译的译文质量很高,语言表达流畅、排版格式规范、专业术语翻译到位、翻译的速度非常快、后期服务热情。我司翻译了大量的专业文件,经过长久合作,名副其实,值得信赖。”

    北京塞特雷特科技有限公司

  • “针对我们农业科研论文写作要求,尽量寻找专业对口的专家为我提供翻译服务,最后又按照学术期刊的要求,提供润色原稿和相关的证明文件。非常感谢世联翻译公司!”

    中国农科院

  • “世联的客服经理态度热情亲切,对我们提出的要求都落实到位,回答我们的问题也非常有耐心。译员十分专业,工作尽职尽责,获得与其共事的公司总部同事们的一致高度认可。”

    格莱姆公司

  • “我公司与马来西亚政府有相关业务往来,急需翻译项目报备材料。在经过对各个翻译公司的服务水平和质量的权衡下,我们选择了世联翻译公司。翻译很成功,公司领导非常满意。”

    北京韬盛科技发展有限公司

  • “客服经理能一贯热情负责的完成每一次翻译工作的组织及沟通。为客户与译员之间搭起顺畅的沟通桥梁。能协助我方建立专业词库,并向译员准确传达落实,准确及高效的完成统一风格。”

    HEURTEY PETROCHEM法国赫锑石化

  • “贵公司与我社对翻译项目进行了几次详细的会谈,期间公司负责人和廖小姐还亲自来我社拜访,对待工作热情,专业度高,我们双方达成了很好的共识。对贵公司的服务给予好评!”

    东华大学出版社

  • “非常感谢世联翻译!我们对此次缅甸语访谈翻译项目非常满意,世联在充分了解我司项目的翻译意图情况下,即高效又保质地完成了译文。”

    上海奥美广告有限公司

  • “在合作过程中,世联翻译保质、保量、及时的完成我们交给的翻译工作。客户经理工作积极,服务热情、周到,能全面的了解客户的需求,在此表示特别的感谢。”

    北京中唐电工程咨询有限公司

  • “我们通过图书翻译项目与你们相识乃至建立友谊,你们报价合理、服务细致、翻译质量可靠。请允许我们借此机会向你们表示衷心的感谢!”

    山东教育出版社

  • “很满意世联的翻译质量,交稿准时,中英互译都比较好,措辞和句式结构都比较地道,译文忠实于原文。TNC是一家国际环保组织,发给我们美国总部的同事后,他们反应也不错。”

    TNC大自然保护协会

  • “原英国首相布莱尔来访,需要非常专业的同声传译服务,因是第一次接触,心中仍有着一定的犹豫,但是贵司专业的译员与高水准的服务,给我们留下了非常深刻的印象。”

    北京师范大学壹基金公益研究院

  • “在与世联翻译合作期间,世联秉承着“上善若水、厚德载物”的文化理念,以上乘的品质和质量,信守对客户的承诺,出色地完成了我公司交予的翻译工作。”

    国科创新(北京)信息咨询中心

  • “由于项目要求时间相当紧凑,所以世联在保证质量的前提下,尽力按照时间完成任务。使我们在世博会俄罗斯馆日活动中准备充足,并受到一致好评。”

    北京华国之窗咨询有限公司

  • “贵公司针对客户需要,挑选优秀的译员承接项目,翻译过程客户随时查看中途稿,并且与客户沟通术语方面的知识,能够更准确的了解到客户的需求,确保稿件高质量。”

    日工建机(北京)国际进出口有限公司